ARTEMISIA ASSOCIATION

The association for R&D actors in the field of ARTEMIS

EMbedded **MON**itoring

Advanced Research & Technology for EMbedded Intelligence and Systems

- Acronym: EMMON
- Full title: <u>EM</u>bedded <u>MON</u>itoring
- Duration: 01.03.2009–29.02.2012 (36 months)
- Budget: 2.576 M€
- Project Web Site: <u>www.artemis-emmon.eu</u>

- Sponsored by 7th Framework Programme (7FP), ARTEMIS Joint Undertaking initiative:
 - Industrial Priority Seamless connectivity and middleware
 - https://www.artemis-ju.eu/
 - https://www.artemisia-association.org/

Project Overview

- Industrial Partners (5)
- Critical Software S.A., Intesys Ltd, Critical Software Technologies Ltd, SESM S.c.a.r.I., Akting Ingeniaritza S.L.
- Research Centres (1)
- Centro de Estudios e Investigaciones Técnicas de Gipuzkoa
- Universities (3)
- Instituto Superior de Engenharia do Porto, Trinity College of Dublin, Aristotle University of Thessaloniki

- Goal: Research and deploy large scale Wireless Sensor Network
 - > 10.000 100.000 nodes in real world environment (50 km2 area)
 - > 100.000 sensors in simulation
 - Large scale continuous environmental monitoring
 - Unprecedented situation analysis
 - Real time (or near) data access and visualization
 - Ability to monitor dynamic, changing environments (sensors per area)
 - Reliable and scalable network infrastructure

Facts:

- Duration: 36 months (1st March 2009 28th February 2012)
- > 9 organizations, 6 countries

• EMMON main objectives are the following:

Objective	Description		
O1	Research, develop and test a functional prototype for large scale WSN deployments		
02	Advance the number of devices by one order of magnitude, by real world validation (10K – 100K nodes)		
O3	Advance the number of devices by two orders of magnitude, by simulation (100K – 1M nodes)		
O4	Improve reliability and fault tolerance mechanisms in WSN		
O5	Identify end-user needs and requirements, as well as operational constraints		
O6	Determine a path for exploitation of project results		

- The vision of smart locations is of significant societal interest today!
- SP3. Smart environments and scalable digital services
 - Smart locations (smart city, smart home, smart public space, ...). A smart city can monitor its levels and distribution of air pollution and give recommendations to Civil Protection
 - Monitor large areas detecting abnormal variations and reacting in accordance (water quality in pipelines, pollution and fire hazards in cities and forests
- SP7. Embedded technology for sustainable urban life
 - Achieve greater efficiency in use of resources, more flexibility in the provision of resources and better situation awareness for the citizen
- SP4. Efficient manufacturing and logistics

EMMON Main Results

- Large scale deployment of fully-functional system prototype in real world scenario (thousands of nodes);
- WSN embedded middleware,
- WSN multilevel communication protocols;
- Simulation models for WSN behaviour analysis;
- Centralized C&C centre;
- Mobile C&C station or device;

EMMON Areas of Application

- Areas of Application:
 - Regional climate/marine monitoring;
 - Water quality monitoring
 - Urban quality of life monitoring (pollution, air and noise);
 - > Forest fire monitoring;
 - Fire & pollution propagation;
 - Civil Protection
 - Natural resources monitoring;
 - Precision agriculture;
 - Personal health monitoring;
 - Industrial plant monitoring.

- Problem Areas:
 - Any problem that requires continuous, periodic, large scale monitoring of the open environment, with variances detection and triggering of actions (alarms, alerts, actions)

EMMON Expected Impact

Impact: Improve peoples life's:

- Detect environment and public safety hazards (temperature, gas, noise, pollution, etc)
- Monitor large geographical areas
- Provide key data to public authorities, organizations, decision makers
- > Take Better decisions based on "full picture"!
- Improve efficiency and reduce costs in existing procedures and maintenance

- Deploy 10x more sensors than today's existing applications
- Develop common architecture & horizontal interoperable infrastructure for service innovation;
- Identify a set of domain specific services, "vertical cases", with relevant business models;
- New embedded middleware with better overall energy efficiency, security, and fault-tolerance;
- New efficient and low power communication protocols
- Reliable middleware for large scale monitoring;

- Sensor networks widespread barriers:
 - Unreliable communication systems
 - > Almost no (or few) technology standards exist!
 - Not easy to use
 - Power consumption -> Low battery life / Short lifetime
 - Scalability problems -> Small deployments
 - > Available solutions too tailored and specific
 - Security gaps, limitations (on data and sensors)

- EMMON will bring:
 - Technology for <u>robust</u> and <u>reliable</u> environmental monitoring applications
 - > Advance from ~1.200 nodes to ~10.000-100.000 nodes capability
 - > Unprecedented data availability
 - > <u>Solve</u> large scale <u>scalability problem</u> -> Allow Large deployments
 - Lower cost of deployments

Foundation for widespread emergence of sensor network products

EMMON collaborates with the End User Committee (9 organizations):

End-User Name	Short Name	Country	Scenario
Marine Hydrophysical Institute	MHI	Ukraine	Marine
National Association for Civil Protection	ANPC	Portugal	Civil Protection
National Directorate for Forest Resources	DGRF / AFN	Portugal	Forest
National Forest Authority (Coimbra)	AFN Coimbra	Portugal	Forest
Ayuntamiento de Irun	AYI	Spain	Urban/City
National Water Agency	ANA	Brazil	River
Laboratory of Forest Management and Remote Sensing	LFMRS	Greece	Forest
Forest Research Institute	FRI	Greece	Forest
InteSys	INT	UK	Simulation

ARTEMISIA ASSOCIATION

The association for R&D actors in the field of ARTEMIS

Thank you for your attention

We value your opinion and questions

Délio Almeida, Project Coordinator Critical Software, SA dalmeida@criticalsoftware.com

URL: www.artemis-emmon.eu Advanced Research & Technology for EMbedded Intelligence and Systems